
Recursive sequences 

1. The set of positive real numbers  a1, a2, … , a2n+1  is one such that  ak – 2ak+1 + ak+2 ≥ 0, 

k = 1 , 2, … , (2n –1).  Show that  
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 Also prove that the equality holds if the numbers are in an arithmetic progression. 

 Deduce that if  0 < t < 1, t
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2. The sequence  a1, a2, a3 , …   is defined as  a1 = 3,  
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3. (i) The terms of a sequence y1, y2, y3,… satisfy the relation   yk = Ayk-1 + B  (k ≥ 2), 

  where  A  and  B  are constants independent of  k  and  A ≠ 1. 

  Guess an expression for  yk  (k ≥ 2)  in terms of  y1, A, B  and  k,  and prove it. 

 (ii) The terms of a sequence x0, x1, x2,…   satisfy the relation   xk = (a + b) xk-1 – ab xk-2  (k ≥ 2), 

  where  a, b  are non-zero constants independent of  k  and  a ≠ b. 

  (a) Express  xk – axk-1  (k ≥ 2)  in terms of  (x1 – a x0) ,  b  and  k. 

  (b) Using (i), or otherwise, express  xk  (k ≥ 2)  in terms of   x0, x1, a, b  and  k. 

 (iii) If the terms of the sequence  x0, x1, x2,…  satisfy the relation   2k1kk x
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   express    in terms of  xkk
xlim

∞→
0  and  x1. 

4. Prove that if  n  is a positive integer, then  ( ) nn

n
b3a13 +=+   for unique integers  an, bn.  Furthermore, 

prove that   (i) an+2 = 2(an+1 + an)  , b n+2 = 2(bn+1 + bn) ; 
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5. The two sequences of positive integers  a1, a2, …, an, … ; b1, b2, …,bn, …  satisfy the following 

conditions:  a1 = b1 = 1  and  an+1 = an + 2bn,   bn+1 = an + bn  for all positive integers n.  

 (i) Prove that for each positive integer  n,  an ≥ n, bn ≥ n  and  an
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 (ii) Reduce from (i)  that  2
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 (iii) Express  
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6. Let  xn, yn  be numbers defined by  
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 x1 = a > 0, y1 = b > 0  and  a > b .  Show that  xn ≤ yn  for  n > 1. 


