Recursive sequences

1. The set of positive real numbers $a_1, a_2, ..., a_{2n+1}$ is one such that $a_k - 2a_{k+1} + a_{k+2} \ge 0$, k = 1, 2, ..., (2n-1). Show that $\frac{a_1 + a_3 + ... + a_{2n+1}}{n+1} \ge \frac{a_2 + a_4 + ... + a_{2n}}{n}$.

Also prove that the equality holds if the numbers are in an arithmetic progression.

Deduce that if
$$0 < t < 1$$
, $\frac{1 - t^{n+1}}{n+1} > \frac{1 - t^n}{n} \sqrt{t}$.

2. The sequence $a_1, a_2, a_3, ...$ is defined as $a_1 = 3$, $a_{n+1} = \frac{a_n^2 + 5}{2a_n}$, (n > 0).

Prove that
$$0 < a_{n+1} - \sqrt{5} < \frac{(3 - \sqrt{5})^{2^n}}{(2\sqrt{5})^{2^n - 1}} < 6\left(\frac{2}{11}\right)^{2^n}$$
.

3. (i) The terms of a sequence $y_1, y_2, y_3,...$ satisfy the relation $y_k = Ay_{k-1} + B$ $(k \ge 2)$, where A and B are constants independent of k and $A \ne 1$. Guess an expression for y_k $(k \ge 2)$ in terms of y_1, A, B and k, and prove it.

- (ii) The terms of a sequence $x_{0,}x_1, x_2,...$ satisfy the relation $x_k = (a + b) x_{k-1} ab x_{k-2}$ $(k \ge 2)$, where a, b are non-zero constants independent of k and $a \ne b$.
 - (a) Express $x_k ax_{k-1}$ $(k \ge 2)$ in terms of $(x_1 a x_0)$, b and k.
 - (b) Using (i), or otherwise, express x_k ($k \ge 2$) in terms of x_0, x_1, a, b and k.
- (iii) If the terms of the sequence $x_{0,}x_{1}, x_{2},...$ satisfy the relation $x_{k} = \frac{1}{3}x_{k-1} + \frac{2}{3}x_{k-2}$ $(k \ge 2),$ express $\lim_{k \to \infty} x_{k}$ in terms of x_{0} and x_{1} .

4. Prove that if n is a positive integer, then $(\sqrt{3}+1)^n = a_n\sqrt{3} + b_n$ for unique integers a_n, b_n . Furthermore, prove that (i) $a_{n+2} = 2(a^{n+1} + a_n)$, $b_{n+2} = 2(b^{n+1} + b_n)$; (ii) $(\sqrt{3}-1)^n = (-1)^{n-1}(a_n\sqrt{3}-b_n)$; (iii) $3a_n^2 - b_n^2 = (-1)^{n-1}2^n$.

5. The two sequences of positive integers $a_1, a_2, ..., a_n, ...$; $b_1, b_2, ..., b_n, ...$ satisfy the following conditions: $a_1 = b_1 = 1$ and $a_{n+1} = a_n + 2b_n$, $b_{n+1} = a_n + b_n$ for all positive integers n.

- (i) Prove that for each positive integer $n, a_n \ge n, b_n \ge n$ and $a_n^2 2b_n^2 = (-1)^n$.
- (ii) Reduce from (i) that $\frac{a_n}{b_n} < \sqrt{2}$, if n is odd , $\frac{a_n}{b_n} > \sqrt{2}$ if n is even and $\lim_{n \to \infty} \frac{a_n}{b_n} = \sqrt{2}$. (iii) Express $\frac{a_{n+1}}{b_{n+1}}$ in terms of $\frac{a_n}{b_n}$ and show that $\left| \frac{a_{n+1}}{b_{n+1}} - \sqrt{2} \right| < \left| \frac{a_n}{b_n} - \sqrt{2} \right|$.

6. Let x_n, y_n be numbers defined by $x_{n+1} = \sqrt{x_n y_n}, \quad y_{n+1} = \frac{x_n + y_n}{2},$

 $x_1=a>0,\,y_1=b>0\quad\text{and}\quad a>b\;.\quad\text{Show that}\quad x_n\leq y_n\quad\text{for}\quad n>1.$